
ESUG – 1sep2009 - 1

SUnit
Once upon a time there were three classes ...

• TestCase

• TestSuite

• TestResult

... and then there was a fourth
— TestResource

This talk is about:

• (mainly) TestResources in SUnit 3.2

• (briefly) SUnit status

ESUG – 1sep2009 - 2

TestResource is an optimisation
• Kent Beck’s rules of optimisation

— Rule 1: do it later
— Rule 2: see rule 1

• eXtreme Programming practices
— Test-driven development

— “But my tests are too slow.”
— Refactoring

— “So refactor your tests to be fast.”

• enter TestResource
— and (somewhat later) explanations of it

Make it run

 Make it right

 Make it fast

ESUG – 1sep2009 - 3

Problems with TestResource

XP style: “Do it later” / “You won’t need it”:

• Every resource set up before any test is run

• If one resource of one test in a suite of 15,000+ fails …
— … the run does nothing – not what you want to see when next you look

XP Style: refactoring + “last make it fast”
 MyTestCase>>setUp
 …
 self assert: databaseSession isOnline description: ‘not online’.

Tests getting slow? Refactor to a TestResource.
 MyTestResource(Object)>>doesNotUnderstand: #assert:description:

ESUG – 1sep2009 - 4

Problems with TestResources
Resources can compete with other resources:

• e.g. connect to one DB at a time, several DBs to test

• I coded the CompetingResource pattern:
— in SUnit 3.1 and earlier, not easy !
— Stephane D and Martin K also had patterns – also not easy

Resources can rely on other resources:

• Tests (and resources) can have ordered resources
MyTestCase class>>resources
 ^Array wth: ConnectToDBResource with: AddTestDataToDBResource

• resource setUp (tearDown) not in order (reverse order)

• resource setUp / tearDown after resource that needs it

ESUG – 1sep2009 - 5

What has changed in TestResource
Resources are made available just-in-time:

• first test that needs it prompts set up

• later tests that need it see it has (or failed to) set up

• tearDown guaranteed at end of run; can be done anytime
— resetting in a test’s tearDown trades performance for test isolation

Resources understand #assert:… protocol

• setUp and isAvailable run inside the handler
— in end-run tearDown, #assert: is just better protocol for same

behaviour

Resource-processing is ordered
— a test’s resources setUp in order and tearDown in reverse order
— a resource’s resources setUp before it and tearDown after it

ESUG – 1sep2009 - 6

Code changes: just-in-time resourcing
TestCase>>runCase
 self resources do:
 [:each |
 self assert: each isAvailable
 description: 'Unavailable resource ', each name,
 ' requested by test ', self printString].
 [self setUp.
 self performTest] sunitEnsure: [self tearDown].

TestSuite>>run
 | result | result := TestResult new.
 self resources do:
 [:each | each isAvailable ifFalse: [^each signalInitializationError]].
 [self run: result]
 sunitEnsure: [self resources reverseDo: [:each | each reset]].
 ^result

ESUG – 1sep2009 - 7

Code changes: 3-valued logic for ‘current’
TestResource class>>isAvailable
 current isNil ifTrue: [self makeAvailable].
 ^self isAlreadyAvailable

TestResource class>>makeAvailable
 | candidate |
 current := false. "any object not nil and not an instance of me would do"
 self resources do:
 [:each |
 self assert: each isAvailable
 description: 'Unavailable resource ', each name,
 ' requested by resource ', self name].
 candidate := self new.
 candidate isAvailable ifTrue: [current := candidate].

TestResource class>>isAlreadyAvailable
 ^current class == self

ESUG – 1sep2009 - 8

Class changes
Once upon a time there were three classes ...

 TestCase, TestSuite and TestResult

... and then there was a fourth ...

 TestResource

... and now a fifth ...

 TestAsserter : abstract superclass of
 TestCase
 TestResource
 any user-created TestCase delegate class

 (... and that’s enough !)

ESUG – 1sep2009 - 9

Any impact on Users ?
Logging

• TestCase methods moved to the class-side
— #isLogging, and #failureLog (and #logFailure: is on both sides)

 (So, who here overrides #isLogging or #failureLog ?)

Profiling

• a test… method’s time: no impact

• a test suite’s overall time: no impact

• a test’s time in #runCase: sometimes see resource time
— time moved from start of suite’s #run to start of (some) tests’ #runCase

 Any objections, voice them now !

ESUG – 1sep2009 - 10

SUnit 3.2

Make your tests run

 Make your tests right

 Make your tests fast

 (resources can help)

Thanks to Yuri Mironenko, Dale Henrichs, James Foster, Tim MacKinnon for helping me port to Squeak, Gemstone and Dolphin.

ESUG – 1sep2009 - 11

SUnit and Friends
SUnit: cross-dialect, backward-compatible, 3-5 classes

— Add-ons: SUnitXProcPatterns, SUnitResourcePatterns, etc.
— UIs: RBSUnitExtensions SUnitBrowser, Squeak TestRunner, etc.

SUnitToo: VW-specific, experimental, 11 classes
— SUnit-Bridge2SU2 maps SUnit tests to SUnitToo tests

Assessments: VW-specific, configurable, 40+ classes
— transparent bridges configurable for SUnit, SUnitToo, etc.

GemStone’s test framework

…

SUnit wants ideas

SUnit will remain cross-dialect, backward-compatible, small

